Contact for the resource

National Oceanography Centre (Liverpool)

15 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 10 / 15
  • Categories  

    This dataset contains tabulations of the heights and times of tidal high and low water at St. Helena from 1 October 1826 to 31 October 1827. The tide was recorded by an instrument designed by Manuel Johnson, a future President of the Royal Astronomical Society, while waiting for an observatory to be built. The tabulations in this dataset were obtained by inspection of photographs of Johnson's tabulation sheets that are held in the archive RGO 6/500 in the Royal Greenwich Observatory collection at Cambridge University Library. It is an important record in the history of tidal science, as the only previous measurements at St. Helena had been those made by Nevil Maskelyne in 1761, and there were to be no other systematic measurements until the late 20th century. Johnson’s tide gauge, of a curious but unique design, recorded efficiently the height of every tidal high and low water for at least 13 months, in spite of requiring frequent re-setting. These heights compare very reasonably with a modern tidal synthesis based on present-day tide gauge measurements from the same site. Johnson’s method of timing is unknown, but his calculations of lunar phases suggest that his tidal measurements were recorded in Local Apparent Time. Unfortunately, the recorded times are found to be seriously and variably lagged by many minutes. Johnson’s data have never been fully published, but his manuscripts have been safely archived and are available for inspection at Cambridge University. His data have been converted to computer files as part of this study for the benefit of future researchers. This dataset supports the paper “Cartwright, D.E.; Woodworth, P.L.; Ray, R.D.. 2017 Manuel Johnson's tide record at St. Helena. History of Geo- and Space Sciences”. Richard Ray (National Aeronautics and Space Administration) and Philip Woodworth (National Oceanography Centre) modified and added figures to David E. Cartwright’s original draft paper and sections of text have been updated, but otherwise the paper is as he intended it. This work was undertaken when Philip Woodworth was an Honorary Research Fellow at the National Oceanography Centre in Liverpool in receipt of an Emeritus Fellowship from the Leverhulme Trust. Part of this work was funded by UK Natural Environment Research Council National Capability funding.

  • Categories  

    This dataset comprises Acoustic Wave and Current (AWAC) profiler data collected in the coastal waters of St Vincent, in the Caribbean Sea. The data were collected betewen 26th July 2018 and 10th October 2018 and 15th January 2019 to 20th March 2019 as part fo two deployments. An AWAC profiler was deployed at approximately 10 metres depth in the shallow coastal waters, south of Georgetown, St Vincent. The dataset is part of the Commonwealth Marine Economies Programme which was launched in 2016 to help support the marine economies of commonwealth small island developing states (SIDS).

  • Categories  

    An Alternative Framework to Assess Marine Ecosystem Functioning in Shelf Seas (AlterEco) will utilise a small fleet of submarine and surface autonomous vehicles combined with ongoing observational programmes to capture a seasonal cycle of physical, chemical and biological measurements on repeat transects over ~150km in the North Sea between November 2017 and January 2019. This dataset contains near real-time hydrographic measurements through the water column obtained from submarine Slocum gliders and Seagliders. The submarine vehicles have also been equipped with auxiliary sensors such as turbulence probes, nutrient sensors and acoustic sensors. Data from these platforms will be converted into the international 'Everyone's Gliding Observatories (EGO)' exchange format. This dataset will also contain measurements taken from CTDs deployed on eight cruises to provide calibration data for the autonomous vehicles. AlterEco involves collaboration between scientists at a number of organisations (National Oceanography Centre (NOC, lead), University of East Anglia (UEA), University of Liverpool (UoL), Plymouth Marine Laboratory (PML), Scottish Association for Marine Science (SAMS) and the Centre for Environment, Fisheries and Aquaculture Science (Cefas). In addition, there are a number of UK and international project partners.

  • Categories  

    An iRobot Seaglider (Serial Number 534) carrying a Seabird CT Sail, Paine pressure sensor and Wetlabs ECO-puck was deployed in the Celtic Sea, Northwest European Shelf for 21 days between the 4th and 25th April 2015. It maintained a position within 10 km of 49° 24.3’ N, 8° 32.9’W and completed 1547 profiles between the sea surface and 120 m water depth. Its mission was to observe the evolution of the water column structure and the accumulation of phytoplankton biomass during spring phytoplankton bloom. Following the extraction of raw data and application of manufacturer calibrations, thermal lag corrections were applied to the temperature following the methods of Garau et al. (2011) and drawing upon a flight model similar to that described by Frajka-Williams et al (2011). Unrealistically high and low values of salinity, derived after thermal inertia corrections, were removed. Further, salinity values within 40 m of the surface (where the vertical speed of the glider was typically unstable) that were greater than 3 standard deviations from the mean salinity within top 40 m were removed. Each salinity profile was smoothed with an 8 m running mean window. Four calibrated CTD casts taken within 1.6 km of the glider were used to calibrate the gliders temperature and salinity. Based on the mean temperature and salinity of water between 80 m and 105 m the glider CT sensors were found to be reading 0.0277°C and 0.0024 psu too low. These constant offsets were corrected for. Chlorophyll-a fluorescence was derived based on the manufacturers calibrations and checked against a fluorometer on the CTD. There is evidence of quenching within the surface 30-40 m during the day which has not been removed or corrected for here. Temperature, salinity and chlorophyll-a fluorescence were gridded onto regular 1 m depth intervals and the profile average position and time calculated. The glider was funded by the NERC Sensors on Gliders Programme and deployed during a UK Natural Environment Research Council (NERC) Shelf Sea Biogeochemistry Programme cruise (DY029). The processed data are held at BODC in Matlab format.

  • Categories  

    Glider data - temperature, salinity, chlorophyll, CDOM, BBP and dissolved oxygen from the English Channel, collected as part of the CAMPUS (Combining Autonomous observations and Models for Predicting and Understanding Shelf seas) project. The purpose of this dataset was proof of concept for a UK Met Office numerical model for predicting phytoplankton bloom locations and also for assimilation into these models for improved forecasting. This is the delayed-mode data set from the glider (high-resolution data stored on the glider and post processed). The data were processed from binary files using a Matlab toolbox and calibrated where possible using CTD data.

  • Categories  

    The dataset contains 39148 years of sea level data from 1355 station records, with some stations having alternative versions of the records provided from different sources. GESLA-2 data may be obtained from www.gesla.org. The site also contains the file format description and other information. The text files contain headers with lines of metadata followed by the data itself in a simple column format. All the tide gauge data in GESLA-2 have hourly or more frequent sampling. The basic data from the US National Atmospheric and Oceanic Administration (NOAA) are 6-minute values but for GESLA-2 purposes we instead settled on their readily-available 'verified hourly values'. Most UK records are also hourly values up to the 1990s, and 15-minute values thereafter. Records from some other sources may have different sampling, and records should be inspected individually if sampling considerations are considered critical to an analysis. The GESLA-2 dataset has global coverage and better geographical coverage that the GESLA-1 with stations in new regions (defined by stations in the new dataset located more than 50 km from any station in GESLA-1). For example, major improvements can be seen to have been made for the Mediterranean and Baltic Seas, Japan, New Zealand and the African coastline south of the Equator. The earliest measurements are from Brest, France (04/01/1846) and the latest from Cuxhaven, Germany and Esbjerg, Denmark (01/05/2015). There are 29 years in an average record, although the actual number of years varies from only 1 at short-lived sites, to 167 in the case of Brest, France. Most of the measurements in GESLA-2 were made during the second half of the twentieth century. The most globally-representative analyses of sea level variability with GESLA-2 will be those that focus on the period since about 1970. Historically, delayed-mode data comprised spot values of sea level every hour, obtained from inspection of the ink trace on a tide gauge chart. Nowadays tide gauge data loggers provide data electronically. Data can be either spot values, integrated (averaged) values over specified periods (e.g. 6 minutes), or integrated over a specified period within a longer sampling period (e.g. averaged over 3 minutes every 6 minutes). The construction of this dataset is fundamental to research in sea level variability and also to practical aspects of coastal engineering. One component is concerned with encouraging countries to install tide gauges at locations where none exist, to operate them to internationally agreed standards, and to make the data available to interested users. A second component is concerned with the collection of data from the global set of tide gauges, whether gauges have originated through the GLOSS programme or not, and to make the data available. The records in GESLA-2 will have had some form of quality control undertaken by the data providers. However, the extent to which that control will have been undertaken will inevitably vary between providers and with time. In most cases, no further quality control has been made beyond that already undertaken by the data providers. Although there are many individual contributions, over a quarter of the station-years are provided by the research quality dataset of UHSLC. Contributors include: British Oceanographic Data Centre; University of Hawaii Sea Level Center; Japan Meteorological Agency; US National Oceanic and Atmospheric Administration; Puertos del Estado, Spain; Marine Environmental Data Service, Canada; Instituto Espanol de Oceanografica, Spain; idromare, Italy; Swedish Meteorological and Hydrological Institute; Federal Maritime and Hydrographic Agency, Germany; Finnish Meteorological Institute; Service hydrographique et oc?anographique de la Marine, France; Rijkswaterstaat, Netherlands; Danish Meteorological Institute; Norwegian Hydrographic Service; Icelandic Coastguard Service; Istituto Talassographico di Trieste; Venice Commune, Italy;

  • Categories  

    The WireWall project developed a prototype wave overtopping field measurement system. The system was designed and trailed at Crosby Beach, Hall Road carpark, north of Liverpool during winter 2018/2019. The data collected include both wave-by-wave overtopping volumes and horizontal velocities. At the time of the project the coastal structure at this site comprised a stepped revetment and vertical sea wall with a recurve. The system was designed at the National Oceanography Centre, validated in HR Wallingford’s flume facility and deployed with Sefton Council. Five datasets are available from the project. These contain processed data from: 1) The numerical wave overtopping estimates for past events used to design the system and plan deployments; 2) The numerical wave overtopping estimates for the joint wave and water level conditions with a 1 in 1 year return period probability to a 1 in 200 year return period probability in Liverpool Bay; 3) The dock side tests; 4) The physical laboratory experiments; and, 5) The field trials during windy spring tides. For Crosby these data can be used to validate/calibrate numerical tools used for coastal scheme design and flood hazard forecasting. Beach profile data collected alongside the overtopping measurements have been archived with the Northwest Regional Coastal Monitoring Programme, https://www.channelcoast.org/northwest/. This project was delivered by the National Oceanography Centre in collaboration with HR Wallingford. Our project partners were Sefton Council, Balfour Beatty, Environment Agency, Channel Coastal Observatory and Marlan Maritime Technologies.

  • Categories  

    This dataset comprises 37 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, in July 2010 throughout Liverpool Bay. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the National Oceanography Centre, Liverpool as part of the National Oceanography Centre (formerly the Proudman Oceanographic Laboratory), Liverpool Bay/Irish Sea Coastal Observatory initiative.

  • Categories  

    This dataset comprises 32 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, in June 2010 from stations throughout Liverpool Bay. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the National Oceanography Centre, Liverpool as part of the National Oceanography Centre (formerly the Proudman Oceanographic Laboratory), Liverpool Bay/Irish Sea Coastal Observatory initiative.

  • Categories  

    The RAPID-WATCH (Rapid Climate Change - Will the Atlantic Thermohaline Circulation Halt?) data set consists of pressure, current velocities, temperature, salinity and density time series. Measurements are collected by moored instruments deployed in arrays across the Atlantic at approximately 26.5N for the Monitoring the Atlantic Meridional Overturning Circulation at 26.5N (MOC) project and at each of three sections across the US and Canadian continental slope between Cape Cod and the Grand Banks for the Western Atlantic Variability Experiment (WAVE) project. The data set also consists of conductivity- temperature-depth (CTD) profiles, and ships' underway monitoring system meteorology and surface hydrography collected during the mooring deployment and servicing cruises. The RAPID-WATCH data set follows on from the original Rapid Climate Change (RAPID) Programme oceanographic dataset (2004-2008). It spans from 2008 until 2015. The RAPID-AMOC data set is expected to extend the RAPID_WATCH dataset to 2020. The main aims of the RAPID-WATCH Programme are to provide oceanographic measurements that allow a decade-long time series of the Atlantic Meridional Overturning Circulation to be derived for use in climate change research. The MOC project is led by scientists at the National Oceanography Centre in Southampton, whilst work on the WAVE element is led by the Liverpool site of the National Oceanography Centre.